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Abstract

The use of environmental tracers in characterization of ground-water systems is
investigated through mathematical modeling of ground-water age and atmospheric tracer
transport, and by a field study at the Mirror Lake site, New Hampshire. Theory is
presented for modeling ground-water age using the advective-dispersive transport
equation. The transport equation includes a zero-order source of unit strength,
corresponding to the rate of aging, and can accommodate matrix diffusion and other
exchange processes. The effect of temperature fluctuations and layered soils on transport
of atmospheric gases to the water table is investigated using a one-dimensional numerical
model of chlorofluorocarbon (CFC-11) transport. The nonlinear relation between
temperature and Henry’s Law coefficient (reflecting air/water phase partitioning) can
cause the apparent recharge temperature to be elevated above the annual mean
temperature where the water table is shallow. In addition, fine-grained soils can isolate
the air phase in the unsaturated zone from the atmosphere. At the USGS’ Mirror Lake,
New Hampshire fractured-rock research site CFC concentrations near the water table are
depleted where dissolved oxygen is low. CFC-11 and CFC-113 are completely absent
under anaerobic conditions, while CFC-12 is as low as one-third of modern
concentrations. Anaerobic biodegradation apparently consumes CFC’s near the water
table at this site. One area of active degradation appears to be associated with streamflow
loss to ground water. Soil gas concentrations are generally close to atmospheric levels,
although some spatial correlation is observed between depleted concentrations of CFC-11
and CFC-113 in soil gas and water-table samples. Results of unsaturated-zone
monitoring indicate that recharge occurs throughout the year in the watershed, even
during summer evapotranspiration periods, and that seasonal temperature fluctuations
occur as much as 5 meters below land surface. Application of ground-water age and

CFC-11 transport models to the large-scale ground-water system at Mirror Lake
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illustrates the similarities between age and chemical transport. Generally, bedrock
porosities required to match observed apparent ages from CFC concentrations are high
relative to porosities measured on cores. Although matrix diffusion has no effect on
steady-state age, it can significantly reduce CFC concentrations in fractured rock in

which the effective porosity is low.
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Chapter 1 Introduction

Estimation of flow and transport properties of large-scale ground-water systemsis
difficult because small-scale measurements cannot be directly up-scaled, and because
large-scale field experiments cannot be easily conducted. The presence of environmental
tracers, such as atmospheric gases, can serve as ongoing experiments on the large-scale
system (e.g. Plummer et al., 1993). Interpretation of tracer transport via quantitative
simulation can yield estimates of large-scale properties. In this approach, the historic
source function is used as a boundary condition for the transport model, and simulated
concentrations are compared directly to measurements. If tracer concentrations are
affected by processes other than advection and dispersion, then those additional processes
must be included in the transport model.

A simple method of interpreting environmental tracer datais by age dating; the
measured concentration is used to estimate ground-water age. For example,
Chlorofluorocarbon (CFC) concentrations in ground water can be converted to arecharge
date when the water was isolated from the atmosphere, based on the record of increasing
atmospheric levels. The difference between the recharge date and the sampling date is
the ground-water age. The ground-water age can be compared to advective travel times,
and hydraulic properties and effective porosity can be estimated (e.g. Reilly et a., 1994).
This method ignores dispersion.

This thesis explores two main topics in the use of ground-water age-dating
tracers, and CFC’sin particular, in estimation of large-scale flow and transport
properties. Thefirst topic is the relation between solute concentration and ground-water
age in systems affected by dispersion, mixing, and matrix diffusion. In Chapter Two, a
method is presented that bridges the gap between modeling ground-water age using

advection alone, and simulating tracer concentrations using advection, dispersion and



exchange processes. Simulations of ground-water age and CFC concentration are
compared and contrasted for a fractured-rock field site in Chapter Five.

The second topic is the effect of additional processes, primarily temperature
fluctuations and degradation reactions, on transport of CFC’ s from the atmosphere to
ground water. The effects of fluctuating temperature and nonuniform soil properties on
CFC concentrations at the water table are simulated in Chapter Three. A previously
observed problem with CFC’s astracersis that under certain low-oxygen conditions
degradation can significantly reduce concentrations (Plummer et a., 1993). In Chapter
Four, afield study of CFC concentrations at the water table focuses on degradation
reactions that may completely remove CFC’ s from recharge waters. Based on thisfield
study, the input source function of CFC-11 to ground water is modified in Chapter Five
for the large-scale transport model to account for degradation in some areas of the
watershed.

Chapter Two presents a theory of direct simulation of ground-water age by
transport modeling. The theory bridges the two current approaches for interpretation of
age-dating environmental tracers. comparison of ground-water age dates to advective
(piston flow) travel times, and simulation of environmental tracer concentrations using
the advective-dispersive transport equation. The impact of matrix diffusion, an important
process in fractured rocks, on ground-water age is theoretically examined. Several
examples illustrate the application of the theory to characterize age in different ground-
water systems. Chapter Two is an extension of Goode (1996).

The effects of temperature fluctuations and material heterogeneities on dissolved
gas transport from the land surface to the water table are examined in Chapter Three. A
one-dimensional transport model is devel oped and applied to unsaturated-zone conditions
representative of humid eastern climates. Simulations examine CFC-11 transport under

nonisothermal conditions in which partitioning into the air and water phases changes as a



function of temperature. The impact of afine-grained soil above the water table on air-
phase diffusion is also examined.

Chapter Four is afield study of the unsaturated zone at the Mirror Lake site
(Hsieh et a, 1993). Use of CFC’ sto age date saturated-zone ground water is based on an
assumption of chemical equilibrium between the water table and the atmosphere.
However, CFC concentrations at the water table are significantly degraded in some
locations in the Mirror Lake watershed. The relation between CFC’s, dissolved oxygen,
redox indicators, and stream/aquifer interaction is examined based on field data collected
over athree-year period at the site. Preliminary summaries of the findings reported here
have been presented at scientific meetings (see abstracts. Goode, 1997; Goode et al.,
1997).

Large-scale ground-water age and CFC-11 transport is simulated in Chapter Five.
These simulations use the theory of Chapter Two, and modifications to a USGS transport
model (Konikow et al., 1996) to approximate the effects of matrix diffusion on transport.
The flow model used is derived from that of Tiedeman and others (1997). Results of the
transport and age simulation are compared and contrasted. CFC-11 results are

qualitatively compared to results from field sampling (Busenberg and Plummer, 1996).
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Chapter 6 Summary and Conclusions

This thesis addresses several issues associated with environmental tracersin
ground water. Topicsinclude mathematical and numerical modeling of age in complex
ground-water systems, effects of temperature on atmospheric tracer transport to the water
table, and afield study of CFC's at the water table. Specific examples and applications
are drawn from the USGS fractured-rock research site at Mirror Lake, New Hampshire.

Chapter Two presents a theoretical model of ground-water age transport that can
be used to characterize systems influenced by advection as well as matrix diffusion and
dispersion. This approach bridges the gap between current approaches of treating
transport as piston flow, or advection alone, focusing on ground-water age, and of
simulating advective-dispersive transport, focusing on tracer concentrations. The theory
presented is general and accounts directly for the effects of dispersion, matrix diffusion,
and other processes on ground-water age. Simulation results using this method can be
compared to apparent ages from tracer concentrations, and can be used to illustrate
ground-water transport conditions in an intuitive age framework. However, this method
does not supplant ssimulation of tracer transport as the best approach to estimating
transport properties from observed concentrations because all processes that affect
measured concentrations of a particular tracer, such as decay and sorption, can be
explicitly included in the simulation. Errorsin apparent age from tracer data, for example
due to mixing, cannot be rectified by the proposed method.

In Chapter Three, the effects of temperature fluctuations on CFC-11 transport
from the land surface to the water table in humid areas are examined by simulation.
Generaly, air-phase diffusion is sufficient to maintain water-table concentrations close to
those in equilibrium with the atmosphere. A determining factor is the extent of

temperature fluctuations at the highest location above the water table where moisture
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contents are nearly saturated. Air-phase diffusion below this point will be unable to
rapidly transport CFC’ s from the atmosphere to the underlying water table and alag will
occur due to water-phase transport in the unsaturated zone. If temperature fluctuations
are large at this point, then concentration of CFC’s in the water column will be elevated
compared to the equilibrium partitioning at the mean temperature. Thisis caused by the
nonlinear relation between temperature and Henry’ s Law coefficient, and will affect all
dissolved gases, depending on the curvature of their temperature relation. Fine-grained
porous media generally hold more moisture than coarse-grained materials and can restrict
vertical CFC transport by limiting air-phase diffusion.

A three-year field study of the unsaturated zone and water table at the Mirror
Lake site, New Hampshire, is presented in Chapter Four. Field data collected included
water levels and unsaturated-zone pressure head, moisture content by TDR, and soil
temperature. Water samples were collected from shallow piezometers and analyzed at
USGS labs for general chemistry as well as dissolved gases, including CFC'’s, tritium,
and other constituents. Results indicate that in some areas of the watershed CFC
concentrations at the water table are significantly degraded by anaerobic biodegradation.
CFC-11 and CFC-113 are completely absent at several locations, while CFC-12 is
degraded to about one-third of modern levels. Independent evidence of anaerobic
degradation includes methane concentrations and hydrogen gas concentrations. The
latter suggest that methanogenesis and sulfate reduction are active terminal electron-
accepting processes. Oxygen and CFC gas transport to the water table is presumed to be
limited by normally high moisture content in the fine-grained glacial drift at the site. An
area of observed streamflow loss corresponds to an area of active degradation, suggesting
alink between the supply of organic carbon from the stream bottom and degradation in
the aguifer. Where dissolved oxygen concentrations are above 4-5 mg/L, CFC
concentrations are in equilibrium with the modern atmosphere, assuming equilibration

temperatures ranging between 4 and 8 °C.
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Chapter Five extends some of the general results of Chapter Two to a particular
case of ground-water flow in glacial drift and bedrock at the Mirror Lake site, New
Hampshire. Results from the age transport model indicate that ground-water agesin the
bedrock are not markedly different than those of the glacial drift. As expected for a
relatively homogeneous parameterization of hydraulic and transport properties, ol dest
ground-water ages exist beneath discharge locations where older water from deep in the
aquifer rises to the land surface. CFC-11 transport simulation results can account for
degradation of CFC-11 in streamflow entering the aquifer, a process that cannot be
included in the general age model. Thisleadsto low CFC-11 concentration benesth a
losing stream reach, while the ground-water ageis very young. Low CFC-11
concentrations are also observed where old water rises from deep in the aquifer to
discharge at lower parts of the Mirror Lake watershed. CFC-11 concentrations are not
related to age for waters older than about 50 years, because the atmospheric concentration
before that time was essentially zero. The impact of matrix diffusion depends on the rate
coefficient for exchange between the flowing water and the immobile water within the
rock. If thisexchange rate is small, then matrix diffusion has a minor retardation effect
on ages and CFC-11 concentrations. However, in the case of age, the steady-state age
distribution (after many, many years) is independent of the rate coefficient. CFC-11
concentrations in the bedrock can be significantly decreased by matrix diffusion, given

the small porosity of the active flow fractures.
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Future Work

Theoretical work on the effect of mixing on ground-water ages estimated from
tracer data, and methods to account for this during interpretation of field data, are much
needed. The theory presented here for ground-water age is developed only for the mass-
weighted average age. Because the input functions of environmental tracers are not
purely linear, the age associated with the concentration of a mixture is not equivalent to
the average age of the mixture. Ground-water samples, especialy from large pumping
wells and springs, represent mixtures of water having different sources, pathways, and
travel times. The ground-water age modeling framework presented here may provide a
basis for methods to simul ate the distribution of ages within a given volume, and the age
distribution could then be directly related to corrsponding concentrations through
convolution.

One of the aspects of seasonal temperature that is not considered hereis the
interaction between changing temperature and variable recharge. Here only steady-flow
conditions are considered. There may be important effects of changing temperature that
will be manifest only when a variable recharge function, such as that due to snowmelt in
the early spring and evapotranspiration during summer, is coupled with the temperature
fluctuation. Such studies would probably require more sophisticated coupled flow and
heat transport models, in contrast to the methods here in which the temperature is
independent of flow. However, preliminary simulations using isothermal flow hydraulic
properties could be made using the numerical tools developed here.

A remaining question about the field results from the Mirror Lake siteisthe
extent to which the observed CFC degradation at the water table affects CFC
concentration in the bedrock. Additional spatial coverage of the watershed would help
clarify thisissue, athough drilling is difficult in much of the area due to the steepness of

the watershed, and bouldersin the glacial drift. Loss of CFC’'sfrom bedrock samples
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would yield apparent ages older than actual ages, but comparison of CFC-12 age dates
and tritium concentrations suggests the opposite result, that the CFC-12 age dates are too
young. More detailed study of transport processes between the glacial drift and bedrock,
and within the bedrock, particularly the role of matrix diffusion and spatial variability,
would be required to interpret CFC concentrations in bedrock at this site.

The large-scale transport model used here for illustration of age and CFC-11
transport does not incorporate smaller-scale spatial variability which exists, but can not
be accurately quantified for the entire watershed. Some of the features evident in these
simulations are not apparent in the measured CFC concentrations in bedrock at the site.
Thisissimilar to the lack of match between simulated vertical head gradients and
observed vertical head gradientsin the large-scale flow model. The large-scale model
does not include these small-scal e features, and these small-scal e features may control
CFC concentration. Given thisinconsistency, it may be necessary to use stochastic
modeling, perhapsin aconditional simulation framework, to generate plausible
realizations of hydraulic and transport propertiesin the basin that yield simulation results

consistent with observed field data.
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